Problem 8: Foveated Rendering

Problem 8: Foveated Rendering

Points: 15

Author: Gary Hoffmann, Denver, Colorado, United States
Problem Background

Virtual Reality has exploded into the market in the last five years, being used for
everything from games and entertainment to product design and engineering. One of
the more recent advances in VR headset design is the addition of eye tracking to
increase performance.

The human eye has an extremely narrow field of view in which perfect 20/20 vision is
attainable and fine detail can be distinguished. This clarity of vision is due to the fovea,
a small depression in the inner retina specialized for this purpose. However, due to the
size of the fovea, the human eye can only see clearly within a field of view of less than
10°. The rest of our vision comes from the brain piecing together imagery as we look
around.

Due to this fact, a VR headset only needs to render the highest resolution imagery
directly where the user is looking. Images outside of that field of view can be rendered
at a lower quality, increasing the performance of the system.

Problem Description

You have been tasked with writing a module for a virtual reality application that
determines the rendering quality for each section of the headset’s screen. For simplicity,
your module will only deal with a single eye on a single screen. The screen will be
divided into a 20-by-20 grid of blocks.

Your program will be given the coordinates
within the grid at which the user is currently
focusing their sight, and will need to output
0 i @ the rendering level of each cell in the grid
row by row.

Columns
0 q 2 19

The cell the user is looking directly at should
be rendered at full quality - 100%. All cells

. around that cell should be rendered at half

. . quality (50%), and all cells around those

. should be rendered at one-quarter quality

a (25%). All other cells should be rendered at
the minimum level of 10%.

Rows

19 " s @

Page 15 of 58 EN



Problem 8: Foveated Rendering

For example, if the user is looking at the block in row 7, column 10, the rendering quality
for each block in the grid would be:

Col 0 - 7 8 9 10 11 12 13 - 19
Row
0 10% - 10% 10% 10% 10% 10% 10% 10% -+ 10%
4 10% - 10% 10% 10% 10% 10% 10% 10% -~ 10%
5 10% - 10% 25% 25% 25% 25% 25% 10% -+ 10%
6 10% - 10% 25% 50% 50% 50% 25% 10% -+ 10%
7 10% - 10% 25% 50% 100% 50% 25% 10% -+ 10%
8 10% - 10% 25% 50% 50% 50% 25% 10% -+ 10%
9 10% - 10% 25% 25% 25% 25% 25% 10% -~ 10%
10 10% - 10% 10% 10% 10% 10% 10% 10% -~ 10%
19 10% - 10% 10% 10% 10% 10% 10% 10% -~ 10%

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of input containing two integers, separated by spaces, representing
the row and column number of the eye position within the screen’s grid, respectively.
Row and column numbers will be between 0 and 19 inclusive.

2
7 10
00

Sample Output

For each test case, your program must output the rendering quality percentage for each
block in the grid. Each row should be printed as a separate line, and columns should be
separated by spaces.

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 50 50 50 25 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 50 100 50 25 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 50 50 50 25 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 25 25 25 25 25 10 10 10 10 10 10 10

EN Page 16 of 58



Problem 8: Foveated Rendering

10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
100 50 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
50 50 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
25 25 25 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10

Page 17 of 58



Problem 9: Time and Time Again

Problem 9: Time and Time Again

Points: 20

Author: Jonathan Brown, Fort Worth, Texas, United States
Problem Background

Times and periods of times can be expressed in many
different ways. National and regional differences, and even
personal preferences, have led to a wide range of formats for
expressing times. This can lead to a great deal of confusion;
does the date 01/03 refer to January 3™ or March 15t... or
January 20037 Is the time 8:45 in the morning or the evening?

You have been asked to break through some of this confusion
by converting a list of times to a new, consistent format.

Problem Description

Your program will receive a list of time durations that provide
the number of hours, minutes, and/or seconds within the
duration.

e Hours will be given as a non-negative integer followed by a lowercase letter ‘i’
(e.g. 2h). Hours will range from 0 to 99 inclusive.

e Minutes will be given as a non-negative integer followed by a lowercase letter ‘m’
(e.g. 2m). Minutes will range from 0 to 59 inclusive.

e Seconds will be given as a non-negative integer followed by a lowercase letter ‘s’
(e.g. 2s). Seconds will range from 0 to 59 inclusive.

These values may not be presented in this order. Values may be separated by spaces,
commas, and/or the word “and”; this text should be ignored. Some of these values may
be missing; for example, an input may only give you minutes and seconds. Any omitted
values should be assumed to be zero.

Regardless of what information is provided, your program will need to print the duration
in a simpler, more consistent format:

HH:MM:SS

In this format, HH is a two-digit number representing the number of hours (including a
leading zero, if necessary). MM is a two-digit number representing the number of
minutes (including a leading zero, if necessary). SS is a two-digit number representing
the number of seconds (including a leading zero, if necessary). Each number is

EN Page 18 of 58



Problem 9: Time and Time Again

separated from the next with a colon, and they are always presented in the same order.
All numbers must be included with the output, even if they are zero.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line of input containing a string describing a time duration in a variable
format as noted above.

5

1m and 45s
10m, 10s

32s, and 12h
76h

1s

Sample Output

For each test case, your program must output the same time interval on a single line in
the HH:MM:SS format described above.

00:01:45
00:10:10
12:00:32
76:00:00
00:00:01

Page 19 of 58 EN



Problem 10: Caesar Cipher

Problem 10: Caesar Cipher

Points: 20

Author: Steve Gerali, Denver, Colorado, United States
Problem Background

The Caesar Cipher is one of the earliest known ciphers,
and among the simplest to learn. Itis a “substitution
cipher”, in which each letter in the original message (the “plaintext”) is shifted a certain
number of places down the alphabet. For example, with a shift of 1, an A would be
replaced with a B, a B would be replaced with a C, and so on. This method is named
after Julius Caesar, who apparently used it to communicate with his generals.

To pass an encrypted message from one person to another, it is necessary that both
parties have the “key” for the cipher, so that the sender can encrypt it and the recipient
can decrypt it. For the Caesar Cipher, the key is the number of letters by which to shift
the cipher alphabet.

Problem Description

You are working for the History Channel, who wants to decrypt all communications that
Julius Caesar made to his generals in order to support a new documentary they’re
filming about the Roman emperor. You will be given a list of encrypted messages, and
the key believed to be used to encrypt those messages. Your program must decrypt
those messages.

For the purposes of this problem, we will be using the English alphabet, shown below in
its standard order (with a shift of 0).

ABCDEFGHIIJKLMNOPQRSTUVWXYZ

If encrypting a message with a shift of 1, each letter in the plaintext will be replaced with
the respective letter shown in the 1-shifted alphabet below.

BCDEFGHIJKLMNOPQRSTUVWXYZA

To decrypt a message, the process is reversed; a letter in the ciphertext would be
replaced with the respective letter in the original English alphabet.

Spaces are not encrypted in this cipher and should remain in place when decrypting a
message.

EN Page 20 of 58



Problem 10: Caesar Cipher

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include two lines:

e Aline with a single integer representing the message key - the number of letters
by which to shift the alphabet when encrypting the message.
e Aline containing lowercase letters and spaces, representing the encrypted

message.
3
1
buubdl bu ebxo
3
ghvwurb wkh fdvwoh
6

yzkgr znk ynov

Sample Output

For each test case, your program must output the decrypted message. Messages
should be printed in lowercase, and all spaces should be retained.

attack at dawn
destroy the castle
steal the ship

Page 21 of 58 EN



Problem 11: Count to 10

Problem 11: Count to 10

Points: 25

Author: Ryan Regensburger, Huntsville, Alabama, United States
Problem Background

When testing software or hardware, it's considered a “best practice” to test every
possible situation to prove that the code or device is stable under any condition it might
come across. For example, if we have a chip with eight LEDs, we might want to light up
those LEDs in every combination to make sure they function properly. This is essentially
an 8-bit binary counter, displaying each number from 0 to 255.

Problem Description

In this problem, you will need to generate test data for a binary counter like that
described above. You will be provided with the number of bits to use for your counter,
and will need to generate a list of all binary numbers with at most that number of bits in
numerical order.

Sample Input

The first line of your program’s input, received from the standard input channel, will
contain a positive integer representing the number of test cases. Each test case will
include a single line with a positive integer, representing the number of bits to use.

1
3

Sample Output

For each test case, your program must output a list of binary numbers, ranging from 0 to
the maximum value with the indicated number of bits, inclusive. Numbers must be listed
one per line, in numerical order. Include any leading zeros up to the required bit length.

000
001
Q010
011
100
101
110
111

EN Page 22 of 58



